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Flow past a transversely oscillating square cylinder in free stream
at low Reynolds numbers
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SUMMARY

This paper reports simulation results for free-stream flow past an oscillating square cylinder at Re=100
and 150, for oscillating-to-natural-shedding frequency ratios of 0.5� fr�3.0 at a fixed oscillation amplitude
of 0.2 of the cylinder width. The transformed governing equations are solved in a non-inertial frame of
reference using the finite volume technique. The ‘lock-in’ phenomena, where the vortex shedding becomes
one with the oscillation frequency, is observed near the natural shedding frequency ( fr≈1). Beyond the
synchronization band, downstream recovery of the wake to its stationary (natural) state (frequency) is
observed in cross-stream velocity spectra. At higher forcing frequencies, a phase lag between the immediate
and the far wake results in a shear layer having multi-polar vortices. A ‘Vortex-switch’ accompanied by
a change in the direction of energy transfer is identified at the ‘lock-in’ boundaries. The variation of
aerodynamic forces is noticed to be different in the lock-in regime. The velocity phase portrait in the far
wake revealed a chaotic state of flow at higher excitation though a single (natural) frequency appears in
the spectra. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For last few decades, engineers concerned with the design of bridges, buildings and offshore
structures have paid much attention to fluid–structure interactions. The vortex dynamics behind a
bluff body, causing fluctuating forces acting on the body, has been a topic of research with many
groups. As the induced vibration of a structure forms an important issue for its stability, much of
the literature deals with the cause, nature and the consequences of what is known as ‘flow-induced
vibration’. Highly informative reviews for flow around a (CC) have been written by Williamson [1]
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and Zdravkovich [2]. A common approach to study fluid–structure interactions is to force the body
to oscillate with a predefined motion that approximates the flow- or vortex-induced motion. In this
type of study [3–11], flow features are examined as the body is subject to a forced oscillation.

When a bluff body is set in a transverse oscillation, near its natural frequency, i.e. when the
forced oscillation frequency is close to the natural shedding one, the wake behind the body attaches
to it and oscillates with a single frequency. The band of frequencies where this synchronization
is seen to occur is known as the ‘lock-on’ [3, 7, 10, 11] regime. The boundaries of this band,
its bandwidth and the characteristic features associated with it offer interesting fluid mechanical
aspects. Ongoren and Rockwell [3] performed a hydrogen bubble visualization experiment on
cylinders of various cross sections subject to controlled oscillations at Reynolds numbers in the
range of 584–1300. The study noted that near the boundaries of this band, the structure of shedding
vortices flip from one side of the cylinder to the other at a particular position of the cylinder. This
feature has been known as the ‘vortex switch’ [10]. Bishop and Hassan [4] found distinct changes
in both the amplitude and timing of vortex-induced forces exerted on the cylinder as the oscillation
frequency is changed within the primary lock-in range. Along with the evidence of hysteresis,
they also observed phase jump in the lock-in range where an almost 180◦ shift in the phase
between the lift coefficient and the cylinder motion occurs. Stansby [5], through his experiments,
associated jumps in the phase angle with changes in the wake width from being greater than that
of the cylinder below the critical excitation frequency, from which lock-in starts, to being less
than that for the cylinder above the critical excitation frequency. Several insightful attempts have
been made to identify the resonance and ‘lock-on’ range [6, 7], timing of vortex formation [8]
and the layout of wake structure [9]. Blackburn and Henderson [10] observed phase switching
at oscillation frequencies near the natural shedding frequency of the fixed cylinder, which they
attributed to changes in the direction of mechanical energy transfer between the cylinder and wake.
Guilmineau and Queutey [11] explained the mechanism of vortex switching from either side of
the cylinder, i.e. development of high vorticity concentration in the near wake of the cylinder.

While a number of literature contributions addressed the laminar unsteady flow over a
stationary square cylinder for a range of Reynolds numbers and dealt with a number of issues, no
comprehensive study exists for flow past an oscillating square cylinder in the low and moderate
Reynolds numbers (Re<500) range. To the best of our knowledge, the issues that have made
the problem of oscillating CC interesting have not been tested extensively on the square cylinder
in the low Reynolds number range. Yang et al. [12] studied flow structures in the wake for
different oscillation speeds and frequencies with amplitude of oscillation kept at 1/� for flow
over a rectangular cylinder placed in a channel at Re=500. Bearman and Obasaju [13] found
the amplification of the coefficient of fluctuating lift to be much less than that of a CC at
high Reynolds numbers, 5.8×103�Re�3.2×104. They also reported a different variation of
phase angle between the lift and the cylinder displacement compared to the oscillating CC
case. Taylor and Vezza [14] used a discrete vortex method to simulate flow past a transversely
oscillating square cylinder. At Re=20000, they predicted the ‘lock-in’ phenomena around the
resonance point ( fr=1) and explained various states of the flow field above and below this
regime.

The primary aim of the present work is to examine the flow past a transversely oscillating square
cylinder in the laminar regime for a range of frequencies (around the natural shedding frequency)
and at a low (compared with the length of the cylinder) amplitude of oscillation. We intend to
determine the synchronization band, the nature of vortex shedding within and outside this range,
behavior of the force coefficients and oscillation of the near and the far wake in relation to the
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forced oscillation, thereby categorizing the flow regimes. We also intend to examine the ‘vortex
switch’ at the ‘lock-in’ boundaries and its relation with the mechanical energy transfer.

1.1. Problem description

The objective of the present work is to numerically study the flow features caused by harmonic and
non-harmonic oscillations of a square cylinder placed in free stream. The cylinder oscillates in the
transverse direction with a fixed amplitude of 0.2 of the cylinder width at a range of frequencies,
0.5� fr�3.0, where fr is the ratio of the cylinder excitation frequency ( fe) to the natural vortex
shedding frequency ( f0) of the stationary cylinder. The vortex shedding mechanism, phase shift in
the vortex layout, energy transfer and the behavior of the aerodynamic forces in conjunction with
fluid–body interaction have been studied. A schematic description of the flow in the inertial frame
of reference is shown in Figure 1(a). Dimensions of the domain considered for simulations are
Xu =8, Xd=24, H =18 and d=1. The Reynolds number (Re= Uind

� ), based on cylinder width
and inflow velocity, are 100 and 150.

The organization of the paper is as follows. We first present the governing equations and boundary
conditions followed by the numerical details. In the subsequent sections simulation results are
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Figure 1. (a) Schematic of the flow domain; computational grid; (b) full view;
and (c) zoomed in near the cylinder.
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presented for a number of issues, such as synchronization, wake recovery, vortex switch, flow
states, aerodynamic force coefficients and mechanical energy transfer. Finally, we conclude the
main findings of the work in Section 5.

2. MATHEMATICAL MODELING

Free-stream flow past a transversely oscillating cylinder can be simulated in a non-inertial frame
[15] attached to the cylinder without changing the position of the artificial far-stream boundaries
[9–11]. In this approach, the effect of the non-inertial frame is represented by a simple source
term in the transverse momentum equation, facilitating computational convenience by avoiding
the re-meshing of the whole domain that is required if a fixed inertial frame were instead used.

2.1. Governing equations

The normalized mass and momentum conservation equations for incompressible, laminar flows in
the inertial laboratory frame of reference are given by

�ui
�xi

=0 (1)

�ui
�t

+ �(u jui )

�x j
=− �p

�xi
+ 1

Re

�2ui
�x j�x j

(2)

where ui (u,v) and xi (x, y) correspond to the velocity and coordinate direction in the inertial frame
of reference, respectively. The transformation rule between the non-inertial frame of reference
fixed to the oscillating cylinder and the inertial laboratory frame is

xi = x̄i +Xi , ui = ūi +Ui (3)

where the barred quantities are in the non-inertial frame. The origin position Xi (X,Y ) and velocity
components Ui (U,V ) of the non-inertial frame with respect to the laboratory frame are given by

X =0, Y = Ac sin�t, U =0, V = Ac�cos�t with �=2� frSt

where Ac, fr and St are the amplitude of oscillation, frequency ratio and Strouhal number or
vortex shedding frequency of the stationary cylinder at the same Reynolds number, respectively.
The above governing equations are written in the non-inertial frame of reference as

�ui
�xi

=0 (4)

�ūi
�t

+ �(ū j ūi )

�x̄ j
=− �p

�x̄i
+ 1

Re

�2ūi
�x̄ j x̄ j

−Ai (5)

where Ax =dU/dt=0, Ay =dV /dt=−Ac�2 sin�t represents the instantaneous acceleration of
the non-inertial frame, i.e. the cylinder.
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2.2. Boundary conditions

The relevant boundary conditions in both reference frames are discussed below:
Inlet: At the inlet, v=0 condition changes to v̄=−V , while u/Uin=1 does not change (ū=1)

as the cylinder moves only in the cross-stream direction. The pressure assumes the Neumann
condition, �p/�x=0.

Far stream: At the far-stream longitudinal boundaries, the free slip condition (�u/�y=0,v=0)
is employed. The normal component of velocity, v changes its value from zero in the inertial frame
to −V in the non-inertial frame while the condition for the longitudinal velocity component and
the pressure remains the same, �u/�y=�ū/�ȳ=�p/�y=0.

Outlet: At the outlet, the Orlanski boundary condition [16], �ui/�t+uc�ui/�x=0 (ui =u,v),
which facilitates the undistorted passage of vortices across the exit plane, is the same for both the
frames. At this boundary pressure is specified, p=0.

Cylinder surface: The no-slip conditions on the cylinder surface, u=0 and v=V , become
ū= v̄=0 in the non-inertial frame of reference. Normal pressure gradient is set to zero at all the
cylinder faces, �p/�n=0.

3. NUMERICAL DETAILS

3.1. Finite volume formulation and solution algorithm

Computations are carried out by a finite-volume-based numerical code using a collocated or non-
staggered arrangement of variables. Time integration of the governing equations are carried out by
the implicit Crank–Nicolson scheme, which is theoretically second-order accurate (leading-order
truncation error is O(�t2)). The governing equations are solved by a two-step projection method.
In the first step, a provisional velocity field is computed excluding the pressure and mass flux
taken as the latest available one

u∗
i P −uni P

�t
VP + 1

2

(∑
f
Fn+1,l
f u∗

i f +
∑
f
Fn
f u

n
i f

)
= 1

2Re

(∑
f
F∗
d f i +

∑
f
Fn
d f i

)
−AiVP (6)

where P and f denote the center and faces of the computational cells with volume VP while the
index i=1,2 correspond to stream-wise (x) and cross-stream (y) directions, respectively. The face
velocities are then calculated by adding a pressure gradient term with the linearly interpolated face
values from the provisional velocities

u f =Ł(u∗
P ,u∗

nb)−
�t

�
(∇ p) f (7)

where Ł denotes linear interpolation of the provisional velocities between the cell center (P) and
its neighboring points (nb). This yields mass flux at the cell faces as

Ff =F∗
f −�t (∇ p) f ·S f (8)

The finite volume approximation of the integrated continuity equation is given by∑
f
Fn+1
f =0 (9)
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When the mass flux calculated from Equation (8) is inserted in the flux balance equation
(Equation (9)), the following equation for the pressure is obtained:

∑
f
Fn+1,l+1
f =∑

f
F∗
f −�t

∑
f
(∇ p) f ·S f =0 �⇒ ∑

f
(∇ p).S f = 1

�t

∑
f
F∗
f (10)

Equation (10) is equivalent to the Poisson equation for pressure correction in SIMPLE-like
algorithms. The converged pressure of Equation (10) is used for new estimate of mass flux in
Equation (8). Here l denotes the flux loop counter that is iterated until flux converges. The converged
mass flux along with the pressure that estimates it corresponds to the divergence free velocity field.
These quantities are then used to solve for the velocities un+1 and vn+1 using the momentum
equations integrated over a finite volume

un+1
i P −uni P

�t
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2

(∑
f
Fn+1
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i f +∑
f
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f u

n
i f

)

=−∑
f
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f S f i + 1

2Re

(∑
f
Fn+1
d f i +∑

f
Fn
d f i

)
−AiVP (11)

The sequential steps that constitute the solution method is written below.

1. Initialize the variables and start with mass flux, Fn+1,l
f =Fn

f .
2. Solve Equation (6) for u∗ and v∗.
3. Compute F∗

f required for the pressure equation.
4. Solve the pressure equation, Equation (10).
5. Estimate new mass flux from Equation (8) and set l= l+1.
6. Repeat steps 2–5 till convergence of the fluxes, |Fn+1,l+1

f −Fn+1,l
f |<� is achieved.

7. Solve Equation (11) for un+1 and vn+1 using converged fluxes and pressure.
8. Set n=n+1 and repeat all the steps (2–7) for the next time step.

Interpolations of variables at the cell center or at the cell faces are achieved by the second-order
scheme. It should be noted that the theoretical accuracy of the spatial interpolation scheme is based
on the uniform grid framework, and application of it in non-uniform mesh leads to a reduction of
accuracy depending upon the nature and intensity of the non-uniformity [17]. All systems of simul-
taneous linear equations arising from Equations (6), (10) and (11) are solved by the Gauss–Seidel
successive over-relaxation technique. The convergence is assessed after each iteration and
the solution residual (in the root mean square (RMS) sense) is brought below 10−5 for
Equations (6), (10) and (11) while 10−6 for the flux convergence. The grid used in the present
work has been 192×120 with refinement done near the cylinder. A uniform grid of 60×60 is
used on the cylinder surface. The nearest grid lines in the x- and y-directions from the cylinder are
0.007 and 0.02, respectively. Figure 1(b) shows a typical grid while Figure 1(c) shows a detailed
view near the cylinder. In all the calculations the time increment �t=0.01 is used. Owing to
the fully-implicit nature of the algorithm, no numerical instabilities are observed in any of the
cases studied here. The solution of the stationary cylinder provides the initial condition for the
oscillating case at the same Reynolds number.
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To reduce the computational time, the code has been parallelized using message passing inter-
face. By decomposing the computational domain into a number of subdomains, calculations are
distributed among different processors keeping the load balancing factor (ratio of maximum to
minimum number of cells across all the subdomains) as close as possible to unity. It has been
observed that with increase in the communication time compared with the computational time,
the parallel algorithm provides lesser speed-up (ratio of times taken in a single processor to multi
processor environment). Thus, the code is parallelized keeping communication among processors
as minimum as possible. A higher-order interpolation that uses a stencil size more than two requires
extra communication at the interfaces of the subdomains. Hence, we have chosen the interpolation
scheme as the second-order technique that uses three points in the computational stencil.

3.2. Refinement test

The numerical results are sensitive to the number of grid points chosen in the computations. More
accurate results require finer mesh, which increases the cost of computations. To check the effects
of mesh size, the two-dimensional stationary square cylinder problem has been tested for three
different grids. The results obtained for Re=100 and 150 are compared for all the three cases.
The comparisons are shown in Table I where NS indicates the number of grid points taken on each
face of the cylinder. At Re=100, the results show a change of 0.67, 2 and 0.6% in CD , St and
CLrms, respectively, between the finest and the coarsest grids. This change becomes 2.29, 1.92 and
2.5% at Re=150. Since the comparisons show a maximum change in results less than 3% over
all the three grids, we have chosen 192×120 grid for all subsequent calculations considering the
cost-effectiveness of the computations.

3.3. Code validation

The numerical code is tested for Stokes’ first and second problems involving a moving boundary
and a few already reported cases for stationary square cylinder. While the first two problems
test the formulation for the non-inertial reference frame, the third case compares results with the
published literature for the unsteady bluff body flow. Figures 2(a) and (b) show comparison with
analytical results for the Stokes’ problems while Figures 2(c) and (d) compare the present results
with that from the literature [18–20] for the stationary cylinder case.

3.4. Domain-dependence test

In flows with unsteady wake, selection of the downstream length is important as it affects the
quality of the solution. Too small a length distorts the convecting vortices that form the Kármán

Table I. Computational features of the refinement test at Re=100 and 150.

Re Grid size NS CD St CLrms

100 192×120 60 1.51 0.147 0.16
202×130 70 1.51 0.15 0.16
250×150 80 1.52 0.15 0.161

150 192×120 60 1.482 0.156 0.28
202×130 70 1.502 0.157 0.283
250×150 80 1.516 0.159 0.287
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Figure 2. Comparative results: Stokes’ (a) first and (b) second problem; flow past a stationary square
cylinder: (c) 〈CD〉–Re and (d) St–Re.

vortex street. However, choice of a larger length requires more grid points that leads to increase
in computational time. Thus, selection of the downstream length is crucial. Sohankar et al. [21]
reported that the Neumann boundary condition works well compared with the Orlanski condition
for flow past a square cylinder at incidence. However, for large downstream length (Xd=26),
differences in results and flow pattern do not appear for the two boundary conditions. In an earlier
study [22], we noticed that when the downstream length is smaller (Xd=15), integral parameters
vary considerably. However, at a larger length (Xd=25), changes in Xd leads to differences in
integral parameters less than 2%. Also, increasing the downstream length demands more grid
points to maintain a consistent grid spacing near the cylinder and away from it. Based on these
observations, we have chosen Xd=24 for all the calculations reported in this paper.

For unconfined flows, a larger domain size (smaller blockage) in the cross-stream direction
indicates larger incoming flow, which changes the solution. However, changes in the results are
trivial at smaller blockage ratios. For instance, Sohankar et al. [21] reported that if the blockage
is reduced from 5 (H =20) to 2.5% (H =40), the maximum change in CD , St and CLrms is
1.4%. They observed a higher change (≈7%) in the base suction coefficient. We have tested
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Table II. Details of the domain dependence test at Re=100.

Blockage (%) Grid size CD St CLrms

10 (H =10) 192×120 1.605 0.154 0.171
5 (H =20) 192×180 1.51 0.147 0.16
2 (H =50) 192×240 1.504 0.148 0.162

the effects of domain size in the cross-stream direction at Re=100. The results are compiled in
Table II. In these simulations, the number of grid points in the x-direction is fixed with maximum
and minimum grid lengths set at �x =0.75 and �x =0.007, respectively. For different blockage
ratios in the cross-stream direction, the minimum (�y =0.02) and the maximum (�y =0.35)
grid sizes are retained by varying the number of grid points. When the blockage ratio is
changed from 10 to 5%, changes in CD , St and CLrms are 6.29, 4.76 and 6.87%, respec-
tively. However, as the blockage is further reduced to 2%, these changes become 0.4, 0.68
and 1.25%. Thus, considering the cost of computations due to large number of grid points for
H>20 and the changes in the results, we have chosen H =18 for all the calculations to be
followed.

4. RESULTS AND DISCUSSION

In addition to the pressure, the surface tangential component of the cylinder acceleration plays an
important role in the vortex formation and shedding mechanism when the cylinder is in motion.
Blackburn and Henderson [10] reported a similar observation in the case of a CC. There are
two modes of vortex shedding observed in the simulations. In the first mode, vortices form and
are shed from the two rear-end corners, the same process as that of a stationary cylinder. The
second mode involves growth of vortices on the two horizontal surfaces of the cylinder, where they
subsequently merge with the shear layers to be shed into the wake. Both modes have been observed
to coexist and, depending upon the cylinder acceleration either of them may dominate over the
other.

4.1. Wake synchronization

Figure 3 shows the shedding frequency ( fs) over a range of excitation frequencies ( fe) at Re=100
and 150, respectively. In the graph, the ordinate shows the vortex shedding frequency ( fs) normal-
ized by the excitation frequency ( fe/ fs) to ascertain the synchronization band ( fs= fe) while the
abscissa shows the frequency ratio ( fr= fe/ f0). A band limited wake-synchronization, similar to the
case of a CC [4, 8, 10, 23], is observed (regions ‘bc’ and ‘b1c1’) in the figure. This region is known
as the ‘lock-in’ regime where the vortex shedding occurs at exactly the excitation frequency, i.e. the
shedding synchronizes with the excitation. The synchronization bands are found to be 0.95� fr�1.2
at Re=100 and 0.8� fr�1.3 at Re=150. The bandwidths are smaller than what Tanida et al. [7]
found in their experiment with the CC at a comparable Reynolds number (Re=80). In the figures,
the excitation frequencies below the ‘lock-in’ range (point ‘a’) correspond to a sub-harmonic
excitation and frequencies above the ‘lock-in’ range (points ‘d’ and ‘e’) represent super-harmonic
states.
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Figure 3. Vortex shedding frequency over the excitation frequency showing ‘lock-in’ region.

4.1.1. Near-wake shedding frequency. To estimate the dominant frequencies in the near-wake flow,
the spectra of force coefficients are obtained using Discrete Fourier Transformation [15] of the
signals recorded during the simulations. The sampling rate for the signals of force coefficients and
the velocity components is �S =100 (in non-dimensional unit). According to the Nyquist–Shannon
sampling theorem, the upper bound for frequency component of the signal that can be reconstructed
from the recorded discrete data is �B<�S/2=50. The maximum dominant frequency (≈0.5)
resolved by the samples is considerably smaller than this limit. The step size between two discrete
frequencies is approximately � f =0.0025 in all the plots.

Figures 4 and 5 show a few selected drag and lift spectra at different excitation frequencies
for Re=100 and 150, respectively. Outside the ‘lock-in’ range, the lift spectrum shows peaks
at both the shedding and excitation frequencies indicating co-existence of both the natural and
the forced mode of oscillation. But in the drag spectrum, peaks occur not only at the shedding
and body frequencies, but also at harmonics and combinations (sum and difference) of them as
evident in Figures 4(a), (d) and 5(a), (d). In the synchronized regime, occurrence of a single
peak confirms the wake being locked to the cylinder and it oscillates with the cylinder. Note
that the peak frequency for the drag coefficient is twice that of the peak frequency for the lift
coefficient.

4.1.2. Far-wake shedding frequency. The far-wake oscillation frequency is calculated from the
spectra of the cross-stream velocity (v) recorded at a distance of five units downstream of the
cylinder’s rear face along the center line of the cylinder (y=0). Figures 6 and 7 show a few
selected v-spectra and the phase portrait between the u and v velocities at both harmonic and
non-harmonic excitation frequencies. Below the ‘lock-in’ frequencies, the appearance of only the
natural frequency (see Figure 6(I)(a)) implies that cylinder excitation does not affect the natural
oscillation mode of the far wake. In the synchronized regime the peak occurs at the frequency that
is the same as the excitation frequency, as is evident from Figures 6(II)(a) and 7(I)(a). In this range,
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Figure 4. Drag (inset) and lift spectra at Re=100: (a) fr=0.8; (b) fr=1.0; (c) fr=1.2; and (d) fr=1.3.

a single-orbit phase portrait (Figures 6(II)(b) and 7(I)(b)) further confirms the existence of a single
frequency. Thus in the ‘lock-in’ regime, the entire wake attaches with the cylinder to oscillate at
the excitation frequency of the cylinder. As fe goes beyond the ‘lock-in regime’, the far wake
again recovers its natural frequency and the natural mode of oscillation dominates over the forced
one, which can be seen in Figures 6(III)(a) and 7(III)(a). However, a quasi-periodic phase diagram
at Re=100 (Figure 6(III)(b)) changes to a chaotic nature at Re=150 (Figures 7(II), (III)(b)).
This points out a possible onset of instabilities at lower super-harmonics at Re=150. A partial
recovery of the far wake with the existence of multiple peaks in the v-spectrum can be seen in
Figure 7(II)(a) at a non-harmonic excitation showing the presence of frequencies intermediate to
the excitation and the natural shedding frequencies.

4.2. Vortex shedding mechanism

Sequences of vortex shedding at a non-harmonic ( fr=0.8 at Re=100) excitation are shown in
Figures 8(I)(a)–(e), where vortex shedding occurs at the natural frequency. The cylinder oscillation
and the vortex shedding are out of phase, as evident from Figures 8(I)(a) and (e), which are
qualitatively different. Owing to the low Reynolds number and the forced frequency, the shape of the
shear layers and their fluttering motion is close to the stationary case. An increase in the Reynolds
number results in thinning and stretching of the shear layers with more intense fluttering. Note,
for a sub-harmonic excitation at fr=0.5 (Re=150), shown in Figures 8(II)(a)–(e), asynchronous
shedding is apparently in phase with the cylinder oscillation. As the excitation frequency is half
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Figure 5. Drag (inset) and lift spectra at Re=150: (a) fr=0.5; (b) fr=0.9; (c) fr=1.2; and (d) fr=1.5.

the natural frequency, two pairs of vortices are observed to shed, and the state of the wake is
identically the same as the cylinder completes a full cycle ((a) and (e) correspond to y=−Ymax).

In the synchronized period, vortex shedding takes place at the excitation frequency of the
cylinder and the whole wake oscillates with the same frequency. This fact is further verified by the
in-phase shedding of a single pair of vortices in the wake, shown in Figures 9(a)–(i) with (a) and
(i) being identical for the case fr=1.2 at Re=150. Increase in the acceleration of the cylinder
results in a disorganized near-wake structure. Note that vortices, as they travel downstream in the
wake remain on the same side of the longitudinal center line where they were shed.

At frequency ratios above the ‘lock-in’ regime, formation of vortices from the top and bottom
surfaces of the cylinder becomes apparent (see Figure 10). This mode of vortex formation is
synchronized with the cylinder oscillation. This second (‘forced’) mode of vortex generation
dominates over the first (‘natural’) one as cylinder oscillation increases beyond the ‘lock-in’ period.
The far wake, however, recovers the natural frequency mode above the synchronous period. Thus,
vortices forming from the horizontal surfaces of the cylinder coalesce, leading to the existence of
multi-polar vortices attached to the cylinder. Figures 10(a) and (b) demonstrate the bi-polar and
tri-polar nature of the vortices in the near wake for fr=2 and fr=3, respectively. The figures also
show that shedding of vortices in the far-wake occurs at the natural frequency. The same recovery
process in the wake was also reported by Ongoren and Rockwell [3].

For all the cases studied, 0.5� fr�3, Re=100,150, the 2S mode of vortex topology is found in
the wake. For non-harmonic cases, vortex shedding and the cylinder oscillation are out of phase
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Figure 6. (a) v velocity spectra in the far wake and (b) phase portrait between u and v velocities at
Re=100 for (I) fr=0.9; (II) fr=0.95; and (III) fr=1.5.

and thus a cylinder oscillation cycle does not correspond to exactly one pair of shed vortices. On
the other hand, for harmonic cases, though the cylinder induces its oscillation to the near wake, the
far wake recovers the natural shedding mode. This results in the formation of multi-polar vortices.

The topology of the vortices in the wake is known to be important since it sheds lights on the
possible explanation of the wake transition in accordance with its behavior at different Reynolds
number. Moreover, the experiments of Ongoren and Rockwell [3] showed that the formation of
vortices (timing) and their shedding into the wake differ dramatically as the shape of the bluff
object changes. In the present study, at both Reynolds numbers, the ‘2S’ mode of wake type
is found near the frequency ratio one ( fr≈1). However, a closer look at the wake snapshots
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Figure 7. (a) v velocity spectra in the far wake and (b) phase portrait between u and v velocities at
Re=150 for (I) fr=1.2; (II) fr=1.3; and (III) fr=2.

(Figures 8–10) suggests that this mode is closer to what Williamson and Roshko [24] classified as
‘C(2S)’ mode where smaller vortices coalesce into larger structures in the near-wake region. The
rotational aspect of these vortices reveals a similarity of this mode with that of the ‘Antisymmetrical
mode A-III’ of Ongoren and Rockwell [25]. It should be noted that all the previous literature
studies that analyzed the mode of the wake dealt with moderate to high Reynolds number. Thus,
only a qualitative comparison should be made as the flow features are expected to be different
at this range of Reynolds numbers compared with the low Reynolds number laminar flows. We
have not observed the ‘P+S’ mode in any of the cases computed here. At higher frequency ratio,
pairing of the vortices are observed and as the cylinder oscillation is considerably higher than the
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Figure 8. Instantaneous vorticity contours (dashed for negative values) for a cycle of cylinder oscilla-
tion. Arrows indicate the direction of the cylinder movement: (a) y=Ymax; (b) y=0; (c) y=−Ymax;
(d) y=0; and (e) y=Ymax for (I) fr=0.8, Re=100. (a) y=−Ymax; (b) y=0; (c) y=Ymax; (d) y=0; and

(e) y=−Ymax for (II) fr=0.5, Re=150.

wake, a single vortex is shed into the wake for one oscillation cycle of the cylinder i.e. the ‘S’
mode is evident.

4.3. Vortex switch

Figures 11(a)–(i) show instantaneous vorticity fields at Re=150 in the near-wake region for
different excitation frequencies when the cylinder is at y=−0.7Ymax and moving upwards. In
Figure 11(b) (at fr=0.7), shedding takes place from the top rear corner shear layer (shown in
dashed as negative vorticity) while for the same cylinder position in Figure 11(c) (at fr=0.8), it is
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Figure 9. Instantaneous vorticity contours (dashed for negative values) at eight equi-spaced
phases of cylinder oscillation for fr=1.2, Re=150. Arrows indicate the direction of the
cylinder movement: (a) y=−Ymax; (b) y=−0.7Ymax; (c) y=0; (d) y=0.7Ymax; (e) y=Ymax;

(f ) y=0.7Ymax; (g) y=0; (h) y=−0.7Ymax; and (i) y=−Ymax.

the bottom rear corner shear layer (shown in solid as positive vorticity) that is shedding a vortex
into the near wake. Clearly, at the boundary of the ‘lock-in’ regime, the topology of vortex shedding
from the corners of the cylinder switches sides. This is known as ‘vortex switching’ and has been
previously reported [4, 5, 10] for the CC case. A similar reverse switch is observed at the upper
boundary of the ‘lock-in’ regime between fr=1.2 and fr=1.3 (see Figures 11(f) and (g)). As the
excitation frequency increases above the ‘lock-in’ regime, the length of the shear layers reduces
and the shed vortices shrink owing to higher acceleration of the cylinder, which counteracts the
free development of the attached shear layers and their separation. Signs of multi-polar vortices
(see Figure 11(i)) can also be observed at harmonics ( fr=2) above the synchronization period.

4.4. Flow regimes

The spectra and the phase portraits (see Figures 6 and 7) between u and v velocities, obtained
from the far-wake signals described in Section 4.1.2, reveal the state of the flow with increase
in Reynolds number and the excitation frequency. Below the synchronization period, while the
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Figure 10. Vorticity contours at an instant for super-harmonic excitations at Re=100 showing multi-polar
vortices: (a) fr=2.0, Re=100 and (b) fr=3.0, Re=100.

cylinder moves with the forced frequency, the wake retains its natural frequency. Both modes show
up as peaks in the spectrum, though with comparatively different amplitude, a quasi-periodic state
is evident from Figure 6(I)(b). In the ‘lock-in’ regime, as the whole wake attaches to the cylinder
and oscillates with it, a single peak is obtained accompanied by a phase plot indicating a perfectly
periodic state, shown in Figures 6(II)(b) and 7(I)(b). The effect of Reynolds number becomes
evident above the ‘lock-in’ range. At Re=150, the wake shows transition from a low-chaotic
state (Figure 7(II)(b)) at fr=1.3 to a highly chaotic state (Figure 7(III)(b)) at fr=3. However,
a number of limit cycles almost parallel to each other (Figure 6(III)(b)) are found at Re=100
implying the quasi-periodic nature of the wake even at fr=1.5. Thus, below the ‘lock-in’ regime,
the wake is quasi-periodic in nature that becomes perfectly periodic near the natural frequency
of the stationary cylinder ( fr= fe/ f0≈1). Beyond the synchronization band, though the far wake
recovers the natural shedding frequency, signs of instabilities show up with the increase in fr,
becoming prominent at higher Reynolds number.

4.5. Force coefficients

The time traces of drag and lift coefficients, shown in Figures 12 and 13, indicate the occurrence
of twin frequencies in the non-synchronization regime, though not with a prominent pattern much
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Figure 11. Instantaneous vorticity contours (dashed for negative values) when the cylinder is at
y=−0.7Ymax for different fr at Re=150: (a) fe/ fo=0.5; (b) fe/ fo=0.7; (c) fe/ fo=0.8; (d) fe/ fo=0.9;

(e) fe/ fo=1.0; (f) fe/ fo=1.2; (g) fe/ fo=1.3; (h) fe/ fo=1.5; and (i) fe/ fo=2.0.

below the synchronization period (see Figure 13(a)). A beat pattern comprising two wave forms—
the natural mode of oscillation and the imposed oscillation by the cylinder, is observed below (at
fr=0.9 for Re=100) and above ( fr=1.3 for Re=150) the ‘lock-in’ regime. In the synchronized
regime, a single frequency signal with a nearly constant amplitude ( fr=0.95 for Re=100 and fr=
0.8,1.2 for Re=150) confirms that the wake oscillates with the cylinder at the forced frequency.
However, at very large excitation frequencies, time signals of the force coefficients essentially show
a transition from the weakly twin-frequency mode ( fr=2 for Re=100) to the single-frequency
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Figure 12. Time traces of drag and lift coefficients at Re=100: (a) fr=0.9;
(b) fr=0.95; (c) fr=2.0; and (d) fr=3.0.

mode ( fr=3 for Re=100)—the forcing or the excitation frequency, even while the far wake is
dominated by the natural frequency.

The variation of the mean and RMS of the force coefficients with the excitation frequency are
shown in Figures 14(a)–(c) along with results of a few low Reynolds number CC cases for the sake
of comparison. The present results are similar to the CC cases at a comparable Reynolds number
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Figure 13. Time traces of drag and lift coefficients at Re=150: (a) fr=0.7;
(b) fr=0.8; (c) fr=1.2; and (d) fr=1.3.

and amplitude of oscillation. However, differences in 〈CD〉 outside the synchronization band are
observed. Moreover, the boundaries of the ‘lock-on’ regime are marginally different compared
with the CC flow at a comparable Reynolds number.

The reduction in the thickness of the shear layers with an increase in fr, as seen in Figure 11,
causes greater shear forces on the horizontal faces of the cylinder owing to larger velocity gradient.
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Moreover, due to widening of the downstream wake, the pressure drag also increases. Thus, both
the drag coefficient and its fluctuating part increases as the flow approaches the synchronization
band. However, in the ‘lock-in’ regime, a single-frequency oscillation of the wake organizes the
flow, causing a dip in the fluctuating part of the drag coefficient. With further increase in fr,
twin frequencies reappear in the near wake with a moderate-to-highly chaotic state, which results
in greater values of CD and its fluctuation. Outside the ‘lock-in’ regime, as the wake recovers
its natural mode of oscillation, a trend toward the stationary cylinder CD value is observed.
The RMS fluctuations of the lift coefficient (CLrms) shows the same trend as that of CDrms
with the only exception that it monotonically increases beyond the synchronization regime. This
is because at fr>1.5, the high acceleration of the cylinder leads to a higher vertical pressure
oscillation across the cylinder resulting in a monotonic increase in the fluctuation level of the
lift force. Comparing the time signals of the force coefficients at two Reynolds numbers, it is
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found that the amplitudes of drag and lift forces increase with the Reynolds number. This is
in agreement with what was observed by Patnaik et al. [9] at Re=80 and 144 in case of an
oscillating CC.

4.6. Energy transfer

Energy transfer is defined as the work done on the cylinder by the fluid. The mechanical energy
transfer from the fluid to the oscillating cylinder per motion cycle can be written in non-dimensional
form as

CE=
∫
T
CLv d	

where v is the cylinder transverse velocity, 	 is the non-dimensional time and T is the time period
of cylinder oscillation. Figure 15 shows the time signals of the non-dimensionalized energy rate
(CLv). In the ‘lock-in’ regime, energy flow is unidirectional and energy transfer over a period of
oscillation remains almost constant (see Figures 15(c) and (d)) due to the existence of a single
frequency and a constant phase between the cylinder (its transverse velocity v) and the wake (lift
force) oscillation. Moreover, a positive energy rate, similar to the case of a CC [10], indicates
energy transfer from the fluid to the cylinder through the lift force. This situation is close to the
‘vortex-induced-vibration’ where flow induces vibration of a bluff body by fluctuating lift force. In
the asynchronous regime, the energy rate is either negative or positive with a variable amplitude.
This shows the presence of a two-way coupling with energy being transferred either to the cylinder
or to the fluid. As outside the synchronous band the cylinder and the wake oscillate at different
frequencies, a correlation exists between the change in the sign of CE with the direction of the
phase between the lift and cylinder displacement [26].

The average energy transfer rate in the synchronization band is shown in Figure 16. As the
lift force determines the nature of the energy transfer, the trend in the figure closely follows that
of Figure 14(c) (in the synchronization band). The energy coefficient is always positive in the
‘lock-in’ regime. At higher Reynolds numbers, more energy is transferred from the fluid to the
cylinder owing to the greater instantaneous magnitude of the lift force.
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Figure 16. Energy coefficient in the ‘lock-in’ regime.
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5. CONCLUSIONS

A numerical study of unconfined flow past an oscillating square cylinder at Re=100 and 150
is carried out for the excitation frequency range 0.5 f0� fe�3 f0 ( f0 being the natural shedding
frequency of the stationary cylinder) and amplitude of oscillation 0.2d . Band limited synchroniza-
tion is seen to occur at fr( fe/ f0)≈1 where the wake oscillates with the cylinder at the excitation
frequency. The near-wake vortex shedding occurs with both the excitation and the natural frequen-
cies being present below the ‘lock-in’ regime, while the forced frequency dominates at higher
excitation frequencies above the synchronization period. The far wake recovers the natural mode
of oscillation beyond the synchronization band resulting in the existence of multi-polar vortices
at the super-harmonic state. The behavior of the near and far wake emphasizes the large-scale
features of the vortex shedding from a bluff body where the wake retains its fluctuating charac-
teristics ( fs≈ f0) by adjusting a dissimilar mode locally for small departures from its usual state
( fe≈ f0, Ac/d<1). Phase portraits of velocities in the far wake indicate the onset of a chaotic
regime at higher excitation ( fr�3). A vortex switch, marked by an almost 180◦ phase shift in the
formation of shear layers, is observed at the boundaries of the ‘lock-in’ range. This change has
a strong correlation with the sign of the mechanical energy transfer between the cylinder and the
flow. Positive (flow feeds energy to the cylinder) energy transfer in the ‘lock-in’ range is close to
the flow-induced vibration case. Thus, for asynchronous excitation, a two-way coupling (positive
and negative energy transfer) between the flow and the cylinder can provide new information
regarding the global nature and stability of bluff body wake at low Reynolds numbers.
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